

Fifth Semester B.E. Degree Examination, July/August 2022 Analysis of Indeterminate Structures

Time: 3 hrs .
Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. Missing data may be assumed suitably.

Module-1

1 Analyze the continuous beam shown in Fig. Q1 by slope deflection method. The support B sinks by an amount 10 mm . Take $\mathrm{EI}=30000 \mathrm{kN}-\mathrm{m}^{2}$. Draw BMD and sketch Elastic curve.

Fig. Q1
(16 Marks)

2 Analyze the frame shown in Fig. Q2 by slope deflection method. Draw BMD and sketch Elastic curve.

Fig. Q2
(16 Marks)

Analyse the continuous beam shown in Fig. Q3 by moment distribution method. Draw BMD and sketch elastic curve.

A

Fig. Q3
(16 Marks)

OR

4
Analyze the frame shown in Fig. Q4 moment distribution method. Draw BMD and sketch elastic curve.

Fig. Q4
(16 Marks)

Module-3

5 Analyze the continuous beam shown in Fig. Q5 by Kani's method. Draw BMD and sketch elastic curve.

Fig. Q5
(16 Marks)

OR

6 Analyze the frame shown in Fig. Q6 by Kani's method. Draw BMD.

Fig. Q6
(16 Marks)

Module-4

7 Analyze the continuous beam shown in Fig. Q7 by flexibility matrix method. Draw BMD. (Use system approach only).

Fig. Q7
(16 Marks)

OR

8 Analyze the frame shown in Fig. Q8 by flexibility method. Draw BMD.

(16 Marks)

Module-5

9 Analyze the continuous beam shown in Fig. Q9 by stiffness matrix method, if the downward settlement of support B and C are 10 mm and 5 mm respectively. Take $\mathrm{EI}=184 \times 10^{2} \mathrm{kN}-\mathrm{m}^{2}$ (Use system approach only).

Fig. Q9
(16 Marks)
OR
10 Analyze the frame shown below by stiffness matrix method. Take EI as constant. Draw

[^0](16 Marks)

[^0]: Fig. Q10

